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Basic motivation:

Impact 
Mechanics

Functional materials

and control electronics

Adaptive Impact Absorption (AIA)

design and control of various energy-absorbing structures           

which can be adapted in real-time to actual dynamic loading

Optimization methods 

and control theory

development of novel, efficient and robust              

systems for dissipation of impact energy

I. Adaptive Impact Absorption (AIA)

Adaptive skeletal 

structures 
Adaptive dampers

Yield stress control 

in barriers, bumpers,

railway cars

Adaptive airbags,  

rescue cushions

Hydraulic based on 

functional fluids                  

or controllable valves

Pneumatic with 
controllable valves

Adaptive inflatable 

structures



Design of adaptive MR dampers:

gas

oil

piezoelectric
valve

N

Adaptive absorbers based on MR-fluids, 

G.Mikułowski, 2007

1. Adaptive landing gears, EU Project ADLAND, 2003-2007

2. ALG: optimum control strategy, G.Mikułowski, Ł.Jankowski, 2009

Design of adaptive hydro-pneumatic dampers:

Design of adaptive pneumatic dampers:

1. Mathematical models, optimization, C.Graczykowski, 2012 

2. Piezoelelectric valve design and characterisation, R.Wiszowaty,    

G.Mikułowski, 2013

3. Damper design and experimental testing, R.Wiszowaty, 2016
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II. Controllable dampers for AIA

A. Operating principle and characteristics
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B. Mathematical model of controllable damper

II. Controllable dampers for AIA

2. Model of thermodynamic processes in both chambers

1. Model of valve flow:

Fluid

11,Tp

Q�

p�, V�, m�, T� p	, V	m	, T	

Main assumptions: - homogeneity of fluid parameters (p, T, ρ) in each chamber

- fluid compressibility:  ρ = ρ(p, T)

• Balance of fluid volume or mass (2 ODEs)

• Therm. balance of fluid energy (2 ODEs) 

Damper model: F(u(t), A�(t))
piston 

displacement

valve 

opening area

PDEs governing steady-state flow v�(p, T, x, y)
Space integration of  v�(p, T, x, y) Q� p, T, A� Q�(p, T, A�)or

Conservation laws:

+
• Equations of state (2 AEs) 

• Volumes definitions (2 AEs)

Constitutive and geometric laws:

F = p	A	 − p�A�3. Definition of generated reaction force:

u



B. Mathematical model of controllable damper

II. Controllable dampers for AIA

• Balance of fluid volume: V� = ��
�� p� + ��

�� T� + ��
�� m�  V = V(p, T, m)

β = − �
�

��
�� �,� , α = �

�
��
�� �,� V� + βVp� − αVT� + Q� = 0

δQ = γA T$%& − T , H = c�T� + 1 − αT� �
� p�,  dU = c� − αp �

� dT + βp − αT �
� dp,   δW = pδV

• Thermodynamic energy balance: δQ + dmH = d(mU) + δW

• System of governing equations:

V�� + β�V�p� � − α�V�T�� + Q�� = 0
V�	 + β	V	p� 	 − α	V	T�	 + Q�	 = 0
Q� + m� c�T� + Q�p� 1 − αT� =  m� c�T − αpTQ� + Q�p βp − αT  + mc�T� − αpVT� + Vp� βp − αT + pV�
Q� + Q�p = Q�p βp − αT + mc�T� − αpVT� + Vp� βp − αT + pV�

m� � = −Q�
m� 	 = Q�

Final model: 4 ODEs in terms of variables chosen from:  p�, p	, T�, T	, m� , m	

- inflow chamber

- outflow  chamber



• Constitutive model: 

• Valve flow model:

plug flow 
region

0τ 0τ−0

xy
τ

v

Q�(Δp)   for   Δp ≥ Δp234&
Q� = 0    for   Δp < Δp234&

D

Δp ≥ Δp234&:  viscous flow + plug flow
Δp < Δp234&:  blocking of the flow

2 ODEs - balance of fluid volume

2 ODEs - balance of fluid energy

Force [kN]

Velocity 

[mm/s]

Force [kN]

Velocity 

[mm/s]

Force [kN]

Velocity 

[mm/s]

II. Controllable dampers for AIA

MR fluid decomposed to:

- classical viscous fluid

- compressible fluid 

Graczykowski C., Pawłowski P., Exact physical model of magnetorheological damper, Applied Mathematical Modelling,  

DOI: 10.1016/j.apm.2017.02.035, Vol.47, pp.400-424, 2017

2D viscous incompressible flow

C. Specification for MR damper



• Constitutive model: 

• Valve flow model:

II. Controllable dampers for AIA

1D compressible inviscid flow

Q�(pA4BA, TA4BA, A�)

pV − mRT = 0
β = 1/pCompressibility: 

Thermal expansion: 

EF

GHIJH GKLMGHIJH

α = 1/T

Saint-Venant flow model:

choked flow model:

Q�(pA4BA, TA4BA, pNOP, A�)

2 ODEs - balance of fluid mass

2 ODEs - balance of fluid energy

• Complete model of the impact problem:

pNOP/pA4BA < k234&:
pNOP/pA4BA ≥ k234&:

MuR + p	A	 − p�A� + F u, v = F$%&m� � = Q�(p�, p	, T	)
m� 	 = −Q� p�, p	, T	Q� � + m� �c�T	 = m� �c�T� + m�c�T�� + p�V��

Q� 	 + m� 	c�T	 = m� 	c�T	 + m	c�T�	 + p	V�	
p�V� = m�RT�,  p	V	 = m	RT	

V� = A� h�S + u , V	 = A	 h	S − u
IC: u 0 = uS, u� 0 = vS, 

p� 0 = p�S,  p	 0 = p	S, T� 0 = T�S, T	 0 = T	S

gas

11,Tp

Q�

p�, V�, m�, T� p	, V	m	, T	
F$%&(t) M

vS u

D. Specification for pneumatic damper 



• State-space models:

II. Controllable dampers for AIA

• Selected results:

VW
V& = v

dv
dt = MX� F$%& t − F� p�, p	 − F(u, v)

V�Y
V& = Z

�Y −p�V��(v) + Q�RT	
V�[
V& = Z

�[ −p	V�	(v) − Q�RT	
V�Y
V& = \�Y

2]�Y�Y Q�(c�T	 − c�T�) − p�V��(v)
V�[
V& = − \�[

2]�[�[ Q�RT	 + p	V�	(v)

Variables: u, v, p�, p	,T�, T	
VW
V& = v

V�
V& = MX� …

V�Y
V& = Q�(m�, T�, T	)

V�[
V& = −Q�(m�, T�, T	)

V�Y
V& = \�Y

2]�Y�Y Q�(c�T	 − c�T�) − �Y\�Y
�Y V��(v)

V�[
V& = − \�[

2]�[�[ Q�RT	 + (�X�[)\�[
�[ V�	(v)

Variables: u, v, m�, m	, T�, T	

Dependence of force 

on initial pressure pS
Dependence of force      

on valve opening area A�

D. Specification for pneumatic damper 
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A. Classical variational formulation of AIA problem

• Considered adaptive system:

• Classical formulation:

• Specification to impact of rigid object (F$%&= 0):

optimal change of 
absorber’s force

Minimize:    ` Fabc Ad t − FabcO�&(t) 	dt�
S

With respect to:    Ad t ≥ 0
Subject to:    ` FabcduW(�)

Wg
= E4��S + E4��$%& = �	MvS	 + ` F$%&duW(�)

Wg

Minimize:     ` Fabc Ad t − MvS	2d
	

dt�
S

III. Classical vs. state-dependent formulation

gas

11,Tp

Q�

p�, V�, m�, T� p	, V	m	, T	
F$%&(t) M

vS u Assumptions:

- impact excitation is known or identified 

- no system disturbances (forces or leakages)

- no constraints on maximal valve opening

u T = d,

Minimize:  max Fabc − F$%&• Straightforward formulation:

FabcO�& = k�g[	V



B. Two-step solution of the classical AIA problem

1. The problem of finding feasible path 2. The problem of path-tracking

III. Classical vs. state-dependent formulation

Minimize:    ` Fabc�$ac(u) − FabcO�& 	duW(�)
S

With respect to:    Fabc�$ac (u) ≥ 0
Subject to:    ` Fabc�$ac u duW(�)

Wg
= E4��S

1. Ad = 0 →  max. increase of Fabc�$ac u ,

2. Fabc�$ac(u)  = const., 3. Fabc�$ac(u)  → 0

• Three-stage solution

Minimize:    ` Fabc Ad − Fabc�$ac 	dt�
S

• Solution using inverse dynamics

Fabc Ad = Fabc�$ac
Ideal path-tracking:

Ad t - open-loop control 

Ad u - semi-passive system 

• Solution based on feedback control

+ system model:



Independent impact 

identification system

Parameters: M and v0

Step of path-finding Step of path-tracking

C. Standard control systems for AIA and their drawbacks

• Scheme of closed-loop control system:

• Results of control system operation:

III. Classical vs. state-dependent formulation



D. State-dependent formulation of AIA problem

• Considered self-adaptive system:

• State-dependent formulation: Minimize:    ` Fabc Ad t , t − FabcO�&(u, v, t) 	dt�
S

With respect to:     0 ≤ Ad t ≤ Ad�a%

Subject to:    ` FabcduW(�)
Wg

= E4��S + E4��$%& = �	MvS	 + ` F$%&duW(�)
Wg

III. Classical vs. state-dependent formulation

gas

11,Tp

Q�

p�, V�, m�, T� p	, V	m	, T	
F$%&(t) M

vS u
- automatic adaptation to unknown excitation 

- robustness to process disturbances

- accounting for constraints of valve opening

• Basic concept:

• Force-based state-dependent path-tracking:

Minimize:     ` F� Ad t − Mu� t 	
2 d − u t − F$%& t − FV4c& t

	
dt�

S

actual optimal value of absorber’s force determined during impact

Optimal force:  FabcO�& = kW� (&)[
	(VXW(&)) + F$%&(t)Absorber’s force:  Fabc = F�(Ad(t)) + FV4c&(t)

Requirements:



E. Discretisation of state-dependent formulation

• Application of Model Predictive Control (MPC)

Series of problems:

With respect to:     0 ≤ Ad t ≤ Ad�a%, t ∈ (t4, T)
Subject to:    ` FabcduW(�)

W(&s)
= �	Mu� t4 	 + ` F$%&duW(�)

W(&s)
• Shortening of prediction interval:

• Application of equation of motion: MuR t + F� t = F$%& t − FV4c& t
• Kinematics-based state-dependent path-tracking:

refers to single 

control step
refers to entire  

absorption process 

III. Classical vs. state-dependent formulation

Minimize: ` F� Ad t − Mu� t4 	
2 d − u t4

− F$%& t4 − FV4c& t4
	

dt�
&s

Minimize: ` F� Ad t − Mu� t4 	
2 d − u t4 − F$%& t4 − FV4c& t4

	
dt&stu&

&s

Minimize:    ` uR t + u� t 	
2 d − u t

	
dt�

S
Minimize:    ` uR t + u� t4 	

2 d − u t4

	
dt&stu&

&s



F. Control systems for self-adaptive AIA and their advantages

• Advantages: - lack of impact identification system, - robustness to various disturbances 

The presence of state-dependent term in the objective function  

implies presence of additional closed loop in control system 

III. Classical vs. state-dependent formulation

Faraj R., Graczykowski C., Hybrid Prediction Control for self-adaptive fluid-based shock-absorbers, Journal of Sound and 

Vibration, DOI: 10.1016/j.jsv.2019.02.022, Vol.449, pp.427-446, 2019

Graczykowski C., Faraj R., Development of control systems for fluid-based adaptive impact absorbers, Mechanical 

Systems and Signal Processing, DOI: 10.1016/j.ymssp.2018.12.006, Vol.122, pp.622-641, 2019

• Scheme of closed-loop control system:
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A. Considered model and formulation

IV. Investigation of state-dependent formulation

vS
Ideal gas

p$%&
M Q� p, V, m

u

MuR + (p − p$%&)A =0

m� = −Ad(p − p$%&)
pV = mRT, V = A d − u

IC: u 0 = uS, u� 0 = vS, m 0 = mS

VW
V& = v

V�
V& = − �\�

k VXW + �vwxy 
k  

V�
V& = −Ad  �\�

y VXW − p$%&
IC: u 0 = uS, u� 0 = vS, m 0 = mS

• Single-chamber damper

• Isothermal process 

• Simple model of the gas flow 

With respect to:    m t ∈ m�4z, m�a%
        Ad t ∈ Ad�4z, Ad�a%

Subject to:    { FabcduW(�)
Wg = Y

[MvS	

• State-dependent path-tracking problem

Minimize: ` uR + u� 	
2 d − u

	
dt�

S ` mRT
M(d − u) − p$%&A

M − v	
2(d − u)

	
dt�

S

• Considered system and its basic model



B. Recapitulation of Pontryagin’s maximum principle 

IV. Investigation of state-dependent formulation

Problem considered:
Maximize:   
With respect to: u}
Subject to:   x� = f(x, u}, t)

Hamiltonian: H x, λ, u}, t = g x, u}, t + λ� t  f x, u}, t
Optimality conditions for the case of free time t�:

1.  H x∗ t , λ∗(t), u}∗ t , t ≥  H x∗ t , λ∗(t), u} t , t  
2.  ��

�% x∗ t , λ∗(t), u}∗ t , t = −λ� ∗
3. ��

�� x∗ t , λ∗(t), u}∗ t , t = x� ∗
4.  Transversality conditions:  

λ∗ t� = 0   if   x t�  free  or   x∗ t� = x t�    if   x t�  specified
5. H x∗ t� , λ∗(t�), u}∗ t� , t� = 0

J(x, u}) = ` g x, u}, t dt&�

&g



C. Application to simple AIA problem - formulation

IV. Investigation of state-dependent formulation

Mass of gas as a control variable:
x = u� , u � = x�, x	 �,   xS = vS, 0 �,   u} = m(t)

Problem considered:
Minimize:  J x, u} = ` u}RT

M d − x	 − p$%&A
M − x�	2 d − x	

	
dt&�

S

With respect to: u} ∈ 0, mS ,  Subject to:  x� �x� 	 = − u}RT
M d − x	 + p$%&A

Mx�

Hamiltonian: H x, λ, u}, t = − W�\�
k VX%[ + �vwxy

k λ� + x�λ	 + W�\�
k VX%[ − �vwxy

k − %Y[	 VX%[
	

Optimality conditions:
1a. H x∗ t , λ∗(t), u}∗ t , t ≤  H x∗ t , λ∗(t), u} t , t
1b. Singular arc:  ��

�W� = 0 →  λ�(ca)∗ = 2 W�(��)∗ \�
k(VX%[∗ ) − �vwxy

k − %Y∗ [
	(VX%[∗ )  

→  u}(ca)∗ = k %Y∗ [
	\� + �vwxy VX%[∗\� + �Y(��)∗ k VX%[∗

	\�



C. Application to simple AIA problem - governing equations

IV. Investigation of state-dependent formulation

1.  Control:  u}∗ =   u}�4z  for  λ�∗ <  2 W��s�\�
k(VX%[∗ ) − �vwxy

k − %Y∗ [
	(VX%[∗ )  

            u}�a%  for  λ�∗ >  2 W���w\�
k(VX%[∗ ) − �vwxy

k − %Y∗ [
	(VX%[∗ )

  u} ca∗ x�∗ , x	∗ , λ�∗   for λ�∗ ∈ 2 W��s�\�
k(VX%[∗ ) − ⋯ ,  2 W���w\�

k(VX%[∗ ) − ⋯
2. λ��∗ = 2 W�∗\�

k VX%[∗ − �vwxy
k − %Y∗ [

	 VX%[∗
%Y∗VX%[∗ − λ	∗

λ� 	∗ = −2 W�∗\�
k VX%[∗ − �vwxy

k − %Y∗ [
	 VX%[∗

W�∗\�
k VX%[∗  [ − %Y∗ [

	 VX%[∗ [ + W�∗\�
k VX%[∗ [ λ�∗

3. x� �∗ = − W�∗\�
k VX%[∗  + �vwxy

k
 x� 	∗ = x�∗

4. Transversality conditions: x�∗ t� = 0, λ	∗ t� = 0
5.  − W�∗ &� \�

k VX%[∗ &�  + �vwxy
k λ� t� + W�∗ &� \�

k VX%[∗ &�  − �vwxy
k − %Y∗ &� [

	(VX%[∗ &� )
	 = 0

       + condition of energy disspation → λ�∗ t� = 0
ProblemProblemProblemProblem solvedsolvedsolvedsolved:::: Find λ�∗ 0 , λ	∗ 0   such that all above conditons are satisfied.



C. Application to simple AIA problem - proposed solution method 

IV. Investigation of state-dependent formulation

Remarks:
1. Differentiation of the Hamiltonian with respect to time:

V�
V& =  ��

�W�
�W�
�& + ��

�% x� + ��
�� λ�

 H t = const.: i) at singular arc, ii) when  u}∗ = u�4z or u}∗ = u�a%.
2. Condition H t� = 0, continuity of state, co−state and control:

- H t = 0 for t ∈ 0, t�  → additional equation for costates,
- reduction of the problem to finding λ�∗ 0 .

• The standard approach:
Find λ�∗ 0 using the transversality conds.: λ�∗ t� = 0, λ	∗ t� = 0

• The proposed approach:
- assumption: the last stage follows optimal state-dependent path

             → control u}∗ = k %Y∗ [
	\� + �vwxy VX%[∗\�   at singular arc with λ�∗ t = λ	∗ t = 0, 

- find  λ�∗ 0 using the conditions of reaching singular arc.



C. Application to simple AIA problem - numerical results

TIME

λ1∗ THE FIRST COSTATE

TIME

λ2∗  THE SECOND COSTATE

HAMILTONIAN

TIME

IV. Investigation of state-dependent formulation



x1∗ OBJECT VELOCITY x2∗ OBJECT DISPLACEMENT

TIME

u}∗ DETERMINED CONTROL

TIME

OBJECT DECELERATION

IV. Investigation of state-dependent formulation

C. Application to simple AIA problem - numerical results

TIME TIME



D. More complex AIA problem - formulation

IV. Investigation of state-dependent formulation

Valve area as a control variable:
x = u� , u, m � = x� , x	, x� �,  xS = vS, 0, mS �,   u} = Ad(t)

Problem considered:     Minimize:   J(x, u}) = ` x�RT
M d − x	 − p$%&A

M − x�	2 d − x	
	

dt&�

S
 

With respect to: u} ∈ 0, A��a% ,  Subject to: x� �x� 	x� �
=

− %�\�
k VX%[ + �vwxy

kx�
−u} %�\�

y VX%[ − p$%&

Hamiltonian: H x, λ, u}, t = − %�\�
k VX%[ + �vwxy

k λ� + x�λ	 − u} %�\�
y VX%[ − p$%& λ�

+ %�\�
k VX%[ − �vwxy

k − %Y[	 VX%[
	

Optimality conditions:
1. The inequality H∗ ≤ H yields: u}∗ = �u}�4z for  λ�∗ < 0

u}�a% for  λ�∗ > 0
2. Singular arc:  ��

�W� = 0 →  λ�∗ = 0, finding control function − nontrivial



D. More complex AIA problem - proposed solution method

IV. Investigation of state-dependent formulation

• The proposed approach:
Find λ�∗ 0 , λ	∗ 0 , λ�∗ 0  using the condition of reaching singular arc

• Alternative solution:
a. Assumption of control strategy with three-stages:

i) min. valve opening, i) max. valve opening, iii) following state-dependent path
b. Optimization of control switching times.
c. Verification of Pontryagin’s optimality conditions.

Remarks:
1.  H t = const.: i) at singular arc, ii) when  u}∗ = u�4z or u}∗ = u�a%

H t ≠ 0 for t ∈ 0, t� due to possible control discontinuities.
2. The last stage follows optimal state-dependent path:  x� = k %Y∗ [

	\� + �vwxy VX%[∗\�→  control  u}∗ =  u}∗ x�, x	  at singular arc with  λ�∗ t = λ	∗ t = λ�∗ t = 0.



D. More complex AIA problem - numerical results

TIME

λ1∗ THE FIRST COSTATE

TIME

λ2∗  THE SECOND COSTATE

TIME

THE THIRD COSTATE HAMILTONIAN

TIME

IV. Investigation of state-dependent formulation



D. More complex AIA problem - numerical results

TIME

u}∗ DETERMINED CONTROL

TIME

OBJECT DECELERATION

x1∗ OBJECT VELOCITY x2∗ OBJECT DISPLACEMENT

TIME TIME

IV. Investigation of state-dependent formulation



IV. Investigation of state-dependent formulation

E. Application of direct discretization methods

The concept of direct methods:

1. Discretization of the control function in time domain.

2. Application of selected time integration method

- transformation into large nonlinear optimization problem

3. Application of algorithmic differentiation to construct

gradients and Hessians

4. Application of numerical optimization methods to find

discrete values of the control function



IV. Investigation of state-dependent formulation

F. Numerical example: single-chamber absorber

Control of valve opening - no constraints



IV. Investigation of state-dependent formulation

Control of valve opening - active constraints

F. Numerical example: single-chamber absorber



IV. Investigation of state-dependent formulation

G. Numerical example: double-chamber absorber

Control of valve opening - large number of steps



IV. Investigation of state-dependent formulation

G. Numerical example: double-chamber absorber

Control of valve opening - small number of steps
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V. Adaptive and predictive control methods

• Two versions of state-dependent path-tracking problem:

Minimize:   ` F� ud t − Mu� t 	
2 d − u t − F$%& t − FV4c& t

	
+ qAd ud(t) 	 dt�

S

• Model of system with disturbances:

or  Minimize:   ` uR  ud t − u� t 	
2 d − u t

	
+ qAd ud(t) 	 dt�

S

MuR + F� + FV4c&(t) = F$%&(t)
m� � = Q� p�, p	, TW�2 , C�Ad + QN$a�(t)

m� 	 = −Q� p�, p	, TW�2 , C�Ad − QN$a�(t)
Q� � + Q�c�TW�2 + QN$a�(t)c�TW�V = VV& m�c�T� + p�V��
Q� 	 − Q�c�TW�2 − QN$a�(t)c�TW�V = VV& m	c�T	 + p	V�	

Td Vy�
V& + Ad = kdud(t)Features:

• force disturbance

• gas leakage disturbance

• unknown parameters

• control system equation 

A. Control problem for system with disturbances

Ad ≥ 0 - semi-active system

- active systemAd < 0

(1)
(2)
(3)
4

 5
 (6)

q = �0 for A� ≥ 0q} for A� < 0



V. Adaptive and predictive control methods

B. Construction of the predictive model

• Features of the predictive model:

• Assumptions for model derivation:

• Applied mathematical transformations:

- joint prediction of external and disturbance force: F$%&_V4c& t ,   

- neglecting heat transfer from the chambers: Q� � = Q� 	 = 0

system

kinematics
control 

signal

algebraic 

equationssystem

kinematics

control 

signal

differential 

equations

MuR + F� − F$%&_V4c&(t) = 0
m� � = Q� p�, p	, T	, C�Ad + QN$a�(t)

m� + m	 = m
1
2 M vS	 − v	 + ` F$%&_V4c& t du W

Wg
=  ∆U� + ∆U	

 �[�[��[� = �[g(�[g)�
(�[g)�

Td Vy�
V& + Ad = kdud t` (Eq. 5) dt&

&g
= 0

` (Eq. 4 + Eq. 5) dt&
&g

= 0

` Eq. 1  duW
Wg

= 0

` (Eq. 2 + Eq. 3) dt&
&g

= 0

algebraic 

equations



V. Adaptive and predictive control methods

C. System identification

MuR + F�(p�, p	) = F$%&(t)-FV4c&(t)Equation of motion:

• Identification of system parameters and disturbances

• Direct identification:  no. of unknowns = no. time instants   

uR � u� � u�uR 	 u� 	 u	uR � u� � u�

Mck +
F��
F�	
F��

= 000

Case:  FV4c& = ku + cu�
Mck = − uR � u� � u�uR 	 u� 	 u	uR � u� � u�

X� F��
F�	
F��

Solution depends on measurements times and conditioning of the main matrix

• Optimization approach: 

(larger no. time instants)    
Minimize: � MuR 4 + cu� 4 + ku4 + F�4 	z

4��

• Inertial force ident.:   

Approach 1: assumption of specific form of force, e.g.: FV4c& = ku� + cu� 3 + duR c

F$%& = F$%&(4)
uR (4) uR M − �vwx(s)

WR (s) uR (4) + F�4 =0

M$�

M$� = − F�(4)
uR (4)



V. Adaptive and predictive control methods

C. System identification

• Identification of system parameters and disturbances

MuR (4) + F�(4) + FV4c&(4) = 0,        MuR (4t�) + F�(4t�) + FV4c&(4t�) = 0
1
2 M v(4)	 − v(4t�)	 + ` FV4c& u duW(s�Y)

W(s)
= U�(4t�) + U	(4t�) − U�(4) + U	(4)

• System of equations:

- requires assuming disturbance change,    - effective for short control steps 

m� � = Q� p�, p	, TW�2 , C�Ad + QN$a�(t)Equation of mass balance:

MuR + F�(p�, p	) = F$%&(t)-FV4c&(t)Equation of motion:

Approach 1

Approach 2

require considering

actual valve opening

- extrapolation to entire process: F}V4c& t4, t = f4 FV4c& t� , FV4c& t	 , … , FV4c& t4 , t

Parameters and disturbance identification           update of predictive model each control step 

Approach 2: direct identification at given time instants



V. Adaptive and predictive control methods

D. Final formulation for problem with disturbances

• Problem solved at each step:

With respect to:     ud t ϵ u�4z, u�a% ,  t ∈ (t4, T)

{ F�duW(�)
W(&s) = Y

[Mu� t4 	 + { F}$%&_V4c& t4, t duW(�)
W(&s)

MuR + F� − F}$%&_V4c& t4, t = 0
m� � = Q�(C�Ad) + Q� N$a�(t4, t)
Td Vy�

V& + Ad = kdud t
Subject to:

• Shortened prediction time:

With respect to:     ud t ϵ u�4z, u�a% ,  t ∈ (t4, t4 + ∆t)
Minimize: ` uR ud(t) + u� t4 	

2 d − u t4

	
+ qAd ud(t) 	dt&st∆&

&s

Subject to:   actual predictive model
• Solution methods: i) optimal control with time-continuous approach

ii) control function parametrisation, iii) response parametrisation

Minimize: ` uR ud(t) + u� t4 	
2 d − u t4

	
+ qAd ud(t) 	dt�

&s



E. Optimal control (time-continuous approach)

Objective: minim. of deceleration by valve area control

Case 1: unknown disturbance force 

Case 2: unknown mass and disturbance force

• Mathematical formulation:

• Desired system operation             

near the optimal path: 

Find AdO�& t = arg min ` uR Ad t + u� (t4)	
2 d − u(t4)

	
dt&stu&

&s

A.  −uR (t4) < W� (&s)[
	 VXW(&s)

B.  − uR (t4) > W� (&s)[
	 VXW(&s)

V. Adaptive and predictive control methods

• Standard problem: absorption of single-impact by semi-active system



1. System identification based on measurements and governing equations 

V. Adaptive and predictive control methods

E. Optimal control (time-continuous approach)

• Three-step control algorithm:

• Scheme of the control system:

3. Control determination step: calculation of valve opening Ad t giving uR t = aO�&
using inverse dynamics prediction

2. Prediction step: simulation of response with Ad t = Ad�4z or Ad t = Ad�a%
to check if optimal deceleration aO�& is reached



• The case of disturbance by elastic force

Unknown disturbance force

Unknown impacting object mass and disturbance force

V. Adaptive and predictive control methods

E. Optimal control (time-continuous approach)



• The case of disturbance by viscous force

Unknown disturbance force 

Unknown impacting object mass and disturbance force

V. Adaptive and predictive control methods

E. Optimal control (time-continuous approach)

Graczykowski C., Faraj R., Identification-based predictive control of semi-active shock-absorbers for adaptive dynamic 

excitation mitigation, MECCANICA, Vol.55, No.12, pp.2571-2597, 2020



F. Control function parameterisation

Objective: minim. of deceleration by valve area control

Features:  unknown mass and disturbance force

• Mathematical formulation:

V. Adaptive and predictive control methods

Find  ¡¢£¤ = arg min ` uR Ad(¡, t) + u� (t4)	
2 d − u(t4)

	
dt&stu&

&s
• Simplest parametrization: Ad ¡, t = Ad2Ozc&

1. Application of gradient-based methods

 Starting point:   Ad  4z4 t4 = �	¥AdO�& t4 + AdO�& t4 + ∆t ¦
 Auxiliary function:  Ad O�&(t) – valve opening providing uR t = uR t4 , determined using IDP

2.  Application of linearized predictive model

uR Ad2Ozc&, t = f(p t4 , m t4 , T t4 , u t4 , v t4 , a t4 , Ad2Ozc& , t)
Solution using forward Euler method with one integration step

AdO�& = arg min I Ad2Ozc&Analytical calculation of the objective function I Ad2Ozc&

• Standard problem: absorption of single-impact by semi-active system



F. Control function parameterisation

V. Adaptive and predictive control methods

• Mathematical formulation: Find  ¡¢£¤ = arg min ` uR Ad(¡, t) + u� (t4)	
2 d − u(t4)

	
dt&stu&

&s

• Standard problem: absorption of single-impact by semi-active system

• Scheme of the control system:

Objective: minim. of deceleration by valve area control

Features:  unknown mass and disturbance force



Operation during entire process

Details of method operation

V. Adaptive and predictive control methods

F. Control function parameterisation



Objective: minim. of deceleration and operation cost 

by applied voltage control

Features:  unknown mass, force disturbance and leakage

• Mathem. formulation:

• Influence of voltage on valve opening area: 

V. Adaptive and predictive control methods

F. Control function parameterisation

Ad t = Ad t4 eX x¨xs©�  + Ad�a% W�
W���w 1 − eX x¨xs©�  

Td Vy�
V& + Ad = kdud kd = y���w

W���w  or  y��s�
W��s�ud − constant

for ud ≥ 0  and  kd = y���w
W���w

• Advanced problem: absorption of single-impact in system with leakage (semi-active / active control)

• Simplest parametrization: ud ¡, t = ud2Ozc&

Find  ¡¢£¤ = arg min ` uR ud(¡, t) + u� (t4)	
2 d − u(t4)

	
+ qAd u�(¡, t) 	dt&stu&

&s

parametrisation of applied voltage corresponds to parametrisation of valve opening 

piecewise-constant voltage results in continuous but non-smooth valve opening



V. Adaptive and predictive control methods

F. Control function parameterisation

• Influence of time constant Td on effectiveness of impact absorption process



V. Adaptive and predictive control methods

F. Control function parameterisation

• Comparison of semi-active and active control in case of leakage disturbance



V. Adaptive and predictive control methods

F. Control function parameterisation

• Influence of control cost on operation of active control

C.Graczykowski, R.Faraj, Extended Identification-based Predictive Control for Optimal Impact Mitigation, submitted to 

IEEE 61st Conference on Decision and Control (CDC), Cancún, Mexico, December 6-9, 2022



¡ − vector parametrising control function Ad ¡, t
for which predictive model has analytical solution

G. System response parameterisation

• Mathematical formulation:

V. Adaptive and predictive control methods

Find  ¡¢£¤ = arg min ` uR ¡, t + u� (t4)	
2 d − u(t4)

	
dt&stu&

&s

• Comparison to control parametrisation:

set of functions Ad ¡, t  −  very limited 

• Other interpretation:

• Determination of function Ad ¡, t  using  uR ¡, t :

v(¡, t) = v(t4) + ` uR (¡, t)dt&
&s

u(¡, t) = u t4 + ` v t4 dt&
&s

+ ` ` uR ¡, t dt	&
&s

 &
&s

F� ¡, t = −MuR ¡, t − FV4c&(t4, t)
Mechanical response:

Ad ¡, t , uR ¡, t  − analytical functions

Objective: minim. of deceleration by valve area control

Features:  unknown mass and disturbance force

• Standard problem: absorption of single-impact by semi-active system



p	A	 − p�A� = F� ¡, t
m� + m	 = m

1
2 M v t4 	 − v	 − ` FV4c& t4, t du W

W(&s)
= ∆U� + ∆U	

 �[�[��[� = �[g(�[g)�
(�[g)�  

V�(u) = m�RT�,  p	V	(u) = m	RT	

G. System response parameterisation

V. Adaptive and predictive control methods

• Determination of function Ad ¡, t  using  uR ¡, t

Aªd = dm�dt CdQ��(p�, p	, T	) X�

Aªd = Aªd F� t , dF� t
dt , ` F� t dt&

&s
, ` ` F� t dt	&

&s

&
&s

, M, FV4c& t4, t , p t4 , u t4 , v t4 , t

Aªd = Aªd uR t , duR t
dt , v t , u t , M, FV4c& t4, t , p t4 , t

Aªd = Aªd ¡, M, FV4c& , p t4 , u t4 , v t4 , t

Thermodynamic 

response:

Control function 

(valve opening):

p4 ¡, t
m4 ¡, t
T4 ¡, t



G. System response parameterisation

• Solution of unconstrained optimization problem 

V. Adaptive and predictive control methods

β = uR t4 + ∆t uR β, t = uR t4 + «XWR &s
∆& (t − t4)

βO�& = arg min ` uR t4  + β − uR t4∆t (t − t4) + u� (t4)	
2 d − u(t4)

	
dt&stu&

&s

βO�& = uR O�& t4 + ∆t = − uR t42 + 3
4

u� (t4)	
d − u(t4)

• Solution of constrained optimization problem

Distance from the optimal path decreases 

twice during each control step 

Ad�4z ≤ Aªd ¡, t ≤ Ad�a% ,    V¬�
�4z≤ Vyª� ¡,&

V& ≤ V¬�
�a%

Standard constraints:

Ad�4z ≤ Aªd ¡, t4 + ∆t ≤ Ad�a%Ad�4z ≤ Aªd ¡, t4 ≤ Ad�a%,

t$%&(¡) = t ¡  |  Vyª� ¡,&
V& = 0,

A. Constraints reached at the ends of control step:

Ad�4z ≤ Aªd ¡, t$%& ¡ ≤ Ad�a%
B. Constraints reached in the middle of control step:

Constrained problem solved 

using Lagrange multipliers 

and KKT conditions 



Operation during entire process

Details of method operation

G. System response parameterisation

V. Adaptive and predictive control methods



Comparison of methods with control and response parameterisation – case of elastic disturbance 

G. System response parameterisation

V. Adaptive and predictive control methods

Comparison of methods with control and response parameterisation – case of viscous disturbance 



G. System response parameterisation

• Advanced problem: absorption of double-impact by semi-active system

Objective: minim. of deceleration by valve area control

• Mathematical formulation:

V. Adaptive and predictive control methods

Find  ¡¢£¤ = arg min ` uR ® ¡, t + u� ®(t4)	
2 d − u®(t4)

	
dt&stu&

&s

• Applied models:

Features: unknown mass M® and M®®, 
unknown disturbance force FV4c&

• System identification:

• Solution of the optimization problem:  identical as in previous example

- system model: 2 DOF (mass M® and M®®) + contact force

- predictive model: 1 DOF (unknown mass M®) + external force F$%&
M®uR t + F� t + FV4c& t = F$%&(t)
M® − �vwx & X�¯s�x(&)

WR ° & uR ® t + F� t =0
M$�

M$� = − �± &s
WR ° &s  



Double-impact with inelastic collision, no disturbance: Scenario 1 

Double-impact with inelastic collision, no disturbance: Scenario 2 

G. System response parameterisation

V. Adaptive and predictive control methods
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Double-impact with partially inelastic collision, no disturbance:

Double-impact with partially inelastic collision, elastic disturbance force

G. System response parameterisation

V. Adaptive and predictive control methods

C.Graczykowski, R.Faraj, Adaptive Model Predictive Control of semi-active shock-absorbers under impact excitation, 

submitted to Structural Control and Health Monitoring, 2022



Summary:

Conclusions:

1. The problem of Adaptive Impact Absorption with the use of controllable dampers 
was considered.

2. The state-dependent formulation of AIA problem was proposed.

3. The formulation was investigated using Pontryagin’s principle and direct methods.

4. The adaptive control algorithms based on concept of MPC, system identification, 

and various methods of control determination were proposed and tested.

1. State-dependent formulation and MPC approach are well adjusted to AIA problems     

with unknown system parameters, excitations and disturbances.

2. Algorithms with arbitrary change of control in time provide optimal system response,     

but require intensive control actions. 

3. Algorithms with control parametrisation enable significant decrease of the control cost.

4. Algorithms with response parametrisation additionally allow to reduce the numerical cost.

VI. Summary and conclusions

Dziękuję za uwagę!


