

Adaptacyjno-predykcyjne algorytmy sterowania układów semi-aktywnych poddanych nieznanym obciążeniom udarowym

Cezary Graczykowski, Rami Faraj

Instytut Podstawowych Problemów Techniki PAN Zakład Technologii Inteligentnych Pawińskiego 5B, Warszawa

Spotkanie Sekcji Optymalizacji KM PAN, 20 maja 2022 r.

Presentation outline:

- I. Adaptive Impact Absorption (AIA)
- II. Controllable dampers for AIA
 - operating principle, mathematical model
- III. Classical vs. state-dependent formulation

IV. Investigation of state-dependent formulation

- application of Pontryagin's principle
- application of direct methods

V. Adaptive and predictive control algorithms

- construction of predictive model
- time-continuous approach
- control function and response parametrisation

VI. Conclusions

I. Adaptive Impact Absorption (AIA)

Basic motivation: development of novel, efficient and robust systems for **dissipation of impact energy**

I. Adaptive Impact Absorption (AIA)

Design of adaptive MR dampers:

Adaptive absorbers based on MR-fluids, **G.Mikułowski, 2007**

Ferromagnetic particles

Design of adaptive hydro-pneumatic dampers:

- 1. Adaptive landing gears, EU Project ADLAND, 2003-2007
- 2. ALG: optimum control strategy, G.Mikułowski, Ł.Jankowski, 2009

Design of adaptive pneumatic dampers:

- 1. Mathematical models, optimization, C.Graczykowski, 2012
- 2. Piezoelelectric valve design and characterisation, R.Wiszowaty, G.Mikułowski, 2013
- 3. Damper design and experimental testing, R.Wiszowaty, 2016

Presentation outline:

- I. Adaptive Impact Absorption (AIA)
- II. Controllable dampers for AIA
 - operating principle, mathematical model
- III. Classical vs. state-dependent formulation
- IV. Investigation of state-dependent formulation
 - application of Pontryagin's principle
 - application of direct methods
- V. Adaptive and predictive control algorithms
 - construction of predictive model
 - time-continuous approach
 - control function and response parametrisation
- VI. Conclusions

A. Operating principle and characteristics

MR damper

Pneumatic damper with piezoelectric valve

B. Mathematical model of controllable damper

1. Model of valve flow: PDEs governing steady-state flow \rightarrow v_f(p, T, x, y)

Space integration of $v_f(p, T, x, y) \rightarrow Q_V(p, T, A_v)$ or $Q_m(p, T, A_v)$

2. Model of thermodynamic processes in both chambers

Main assumptions: - homogeneity of fluid parameters (p, T, ρ) in each chamber

- fluid compressibility: $\rho = \rho(p, T)$

Conservation laws:

- Balance of fluid volume or mass (2 ODEs)
- Therm. balance of fluid energy (2 ODEs)

Constitutive and geometric laws:

- Equations of state (2 AEs)
- Volumes definitions (2 AEs)

3. Definition of generated reaction force:
$$F = p_2A_2 - p_1A_1$$

B. Mathematical model of controllable damper

• Balance of fluid volume: V = V(p, T, m) \rightarrow $\dot{V} = \frac{\partial V}{\partial p}\dot{p} + \frac{\partial V}{\partial T}\dot{T} + \frac{\partial V}{\partial m}\dot{m}$

$$\beta = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T,m}, \quad \alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p,m} \qquad \longrightarrow \qquad \dot{V} + \beta V \dot{p} - \alpha V \dot{T} + Q_V = 0$$

• Thermodynamic energy balance: $\delta Q + dm\overline{H} = d(m\overline{U}) + \delta W$

$$\delta Q = \gamma A(T_{ext} - T), \quad \overline{H} = c_p T_v + (1 - \alpha T_v) \frac{v}{m} p_v, \quad d\overline{U} = \left(c_p - \alpha p \frac{v}{m}\right) dT + (\beta p - \alpha T) \frac{v}{m} dp, \quad \delta W = p \delta V$$

• System of governing equations:

$$\begin{cases} \dot{V}_1 + \beta_1 V_1 \dot{p}_1 - \alpha_1 V_1 \dot{T}_1 + Q_V^1 = 0 & & \dot{m}_1 = -Q_m \\ \dot{V}_2 + \beta_2 V_2 \dot{p}_2 - \alpha_2 V_2 \dot{T}_2 + Q_V^2 = 0 & & \dot{m}_2 = Q_m \\ \dot{Q} + \dot{m} c_p T_v + Q_V p_v (1 - \alpha T_v) = \dot{m} c_p T - \alpha p T Q_V + Q_V p (\beta p - \alpha T) + m c_p \dot{T} - \alpha p V \dot{T} + V \dot{p} (\beta p - \alpha T) + p \dot{V} \\ \dot{Q} + Q_V p = Q_V p (\beta p - \alpha T) + m c_p \dot{T} - \alpha p V \dot{T} + V \dot{p} (\beta p - \alpha T) + p \dot{V} & \text{- inflow chamber} \end{cases}$$

Final model: 4 ODEs in terms of variables chosen from: $p_1, p_2, T_1, T_2, m_1, m_2$

C. Specification for MR damper

Graczykowski C., Pawłowski P., Exact physical model of magnetorheological damper, Applied Mathematical Modelling, DOI: 10.1016/j.apm.2017.02.035, Vol.47, pp.400-424, 2017

D. Specification for pneumatic damper

• Valve flow model: 1D compressible inviscid flow

 $p_{low}/p_{high} \ge k_{crit}$: Saint-Venant flow model: $Q_m(p_{high}, T_{high}, p_{low}, A_v)$ $p_{low}/p_{high} < k_{crit}$: choked flow model: $Q_m(p_{high}, T_{high}, A_v)$

• Constitutive model: pV - mRT = 0Compressibility: $\beta = 1/p$ Thermal expansion: $\alpha = 1/T$

2 ODEs - balance of fluid mass2 ODEs - balance of fluid energy

• Complete model of the impact problem:

$$\begin{split} \text{M}\ddot{u} + (p_2A_2 - p_1A_1) + F(u,v) &= F_{ext} \\ \dot{m}_1 &= Q_m(p_1,p_2,T_2) \\ \dot{m}_2 &= -Q_m(p_1,p_2,T_2) \\ \dot{Q}_1 + \dot{m}_1c_pT_2 &= \dot{m}_1c_vT_1 + m_1c_v\dot{T}_1 + p_1\dot{V}_1 \\ \dot{Q}_2 + \dot{m}_2c_pT_2 &= \dot{m}_2c_vT_2 + m_2c_v\dot{T}_2 + p_2\dot{V}_2 \\ p_1V_1 &= m_1RT_1, \ p_2V_2 &= m_2RT_2 \\ V_1 &= A_1(h_1^0 + u), V_2 &= A_2(h_2^0 - u) \\ \text{IC: } u(0) &= u_0, \dot{u}(0) = v_0, \\ p_1(0) &= p_1^0, \ p_2(0) &= p_2^0, \ T_1(0) = T_1^0, \ T_2(0) = T_2^0 \end{split}$$

D. Specification for pneumatic damper

• State-space models:

Variables: u, v, p₁, p₂, T₁, T₂ $\frac{du}{dt} = v$ $\frac{dv}{dt} = M^{-1} [F_{ext}(t) - F_{p}(p_{1}, p_{2}) - F(u, v)]$ $\frac{dp_{1}}{dt} = \frac{\kappa}{V_{1}} [-p_{1}\dot{V}_{1}(v) + Q_{m}RT_{2}]$ $\frac{dp_{2}}{dt} = \frac{\kappa}{V_{2}} [-p_{2}\dot{V}_{2}(v) - Q_{m}RT_{2}]$ $\frac{dT_{1}}{dt} = \frac{RT_{1}}{c_{v}p_{1}V_{1}} [Q_{m}(c_{p}T_{2} - c_{v}T_{1}) - p_{1}\dot{V}_{1}(v)]$ $\frac{dT_{2}}{dt} = -\frac{RT_{2}}{c_{v}p_{2}V_{2}} [Q_{m}RT_{2} + p_{2}\dot{V}_{2}(v)]$

• Selected results:

Variables: u, v, m_1, m_2, T_1, T_2

$$\begin{split} \frac{du}{dt} &= v \\ \frac{dv}{dt} &= M^{-1}[...] \\ \frac{dm_1}{dt} &= Q_m(m_1, T_1, T_2) \\ \frac{dm_2}{dt} &= -Q_m(m_1, T_1, T_2) \\ \frac{dT_1}{dt} &= \frac{RT_1}{c_v p_1 V_1} \Big[Q_m(c_p T_2 - c_v T_1) - \frac{m_1 RT_1}{V_1} \dot{V}_1(v) \Big] \\ \frac{dT_2}{dt} &= -\frac{RT_2}{c_v p_2 V_2} \Big[Q_m RT_2 + \frac{(m-m_2) RT_2}{V_2} \dot{V}_2(v) \Big] \end{split}$$

Presentation outline:

- I. Adaptive Impact Absorption (AIA)
- II. Controllable dampers for AIA
 - operating principle, mathematical model

III. Classical vs. state-dependent formulation

IV. Investigation of state-dependent formulation

- application of Pontryagin's principle
- application of direct methods
- V. Adaptive and predictive control algorithms
 - construction of predictive model
 - time-continuous approach
 - control function and response parametrisation
- VI. Conclusions

A. Classical variational formulation of AIA problem

Considered adaptive system:

Assumptions:

- impact excitation is known or identified
- no system disturbances (forces or leakages)
- no constraints on maximal valve opening

• Straightforward formulation: Minimize: $\max (F_{abs} - F_{ext})$ • Classical formulation: Minimize: $\int_{0}^{T} (F_{abs}(A_{\nu}(t)) - F_{abs}^{opt}(t))^{2} dt$ With respect to: $A_{\nu}(t) \ge 0$ Subject to: $\int_{u_{0}}^{u(T)} F_{abs} du = E_{imp}^{0} + E_{imp}^{ext} = \frac{1}{2}Mv_{0}^{2} + \int_{u_{0}}^{u(T)} F_{ext} du$

• Specification to impact of rigid object ($F_{ext} = 0$): u(T) = d, $F_{abs}^{opt} = \frac{Mv_0^2}{2d}$

Minimize:
$$\int_0^T \left(F_{abs} \left(A_{\nu}(t) \right) - \frac{M v_0^2}{2d} \right)^2 dt$$

B. Two-step solution of the classical AIA problem

1. The problem of finding <u>feasible path</u>

$$\begin{aligned} \text{Minimize:} \quad & \int_{0}^{u(T)} \left(F_{abs}^{feas}(u) - F_{abs}^{opt} \right)^{2} du \\ \text{With respect to:} \quad & F_{abs}^{feas}(u) \geq 0 \\ \text{Subject to:} \quad & \int_{u_{0}}^{u(T)} F_{abs}^{feas}(u) du = E_{imp}^{0} \end{aligned}$$

• Three-stage solution

1.
$$A_v = 0$$
 → max. increase of $F_{abs}^{feas}(u)$,
2. $F_{abs}^{feas}(u) = \text{const.}$, 3. $F_{abs}^{feas}(u) \rightarrow 0$

2. The problem of path-tracking

Minimize:
$$\int_0^T (F_{abs}(A_v) - F_{abs}^{feas})^2 dt$$

Solution using inverse dynamics

Ideal path-tracking: $F_{abs}(A_v) = F_{abs}^{feas}$ + system model:

A_v(t) - open-loop control
 A_v(u) - semi-passive system

Solution based on feedback control

C. Standard control systems for AIA and their drawbacks

• Scheme of closed-loop control system:

D. State-dependent formulation of AIA problem

Considered self-adaptive system:

Requirements:

- automatic adaptation to unknown excitation
- robustness to process disturbances
- accounting for constraints of valve opening
- Basic concept: actual optimal value of absorber's force determined during impact
- State-dependent formulation: Minimi

ze:
$$\int_0^T (F_{abs}(A_{\nu}(t), t) - F_{abs}^{opt}(u, v, t))^2 dt$$

With respect to: $0 \le A_v(t) \le A_v^{\max}$

Subject to:
$$\int_{u_0}^{u(T)} F_{abs} du = E_{imp}^0 + E_{imp}^{ext} = \frac{1}{2} M v_0^2 + \int_{u_0}^{u(T)} F_{ext} du$$

Absorber's force: $F_{abs} = F_p(A_v(t)) + F_{dist}(t)$

Optimal force:
$$F_{abs}^{opt} = \frac{M\dot{u}(t)^2}{2(d-u(t))} + F_{ext}(t)$$

• Force-based state-dependent path-tracking:

Minimize:
$$\int_0^T \left(F_p(A_v(t)) - \frac{M\dot{u}(t)^2}{2(d-u(t))} - [F_{ext}(t) - F_{dist}(t)] \right)^2 dt$$

E. Discretisation of state-dependent formulation

• Application of Model Predictive Control (MPC)

Series of problems: Minimize: $\int_{t_i}^{T} \left(F_p(A_v(t)) - \frac{M\dot{u}(t_i)^2}{2(d-u(t_i))} - [F_{ext}(t_i) - F_{dist}(t_i)] \right)^2 dt$

With respect to:
$$0 \le A_{\nu}(t) \le A_{\nu}^{\max}$$
, $t \in (t_i, T)$
Subject to: $\int_{u(t_i)}^{u(T)} F_{abs} du = \frac{1}{2} M \dot{u}(t_i)^2 + \int_{u(t_i)}^{u(T)} F_{ext} du$

• Shortening of prediction interval:

$$\begin{array}{c} \text{Minimize:} \int_{t_i}^{t_i + \Delta t} \left(F_p \left(A_{\nu}(t) \right) - \frac{M \dot{u}(t_i)^2}{2 \left(d - u(t_i) \right)} - \left[F_{ext}(t_i) - F_{dist}(t_i) \right] \right)^2 dt \\ & \swarrow \\ \text{refers to single} \\ \text{control step} \\ \end{array} \quad \begin{array}{c} \text{refers to entire} \\ \text{absorption process} \end{array}$$

- Application of equation of motion: $M\ddot{u}(t) + F_p(t) = F_{ext}(t) F_{dist}(t)$
- Kinematics-based state-dependent path-tracking:

Minimize:
$$\int_0^T \left(\ddot{u}(t) + \frac{\dot{u}(t)^2}{2(d-u(t))} \right)^2 dt \longrightarrow \text{Minimize:} \quad \int_{t_i}^{t_i + \Delta t} \left(\ddot{u}(t) + \frac{\dot{u}(t_i)^2}{2(d-u(t_i))} \right)^2 dt$$

F. Control systems for self-adaptive AIA and their advantages

• Scheme of closed-loop control system:

The presence of state-dependent term in the objective function implies presence of **additional closed loop** in control system

• Advantages: - lack of impact identification system, - robustness to various disturbances

Graczykowski C., Faraj R., Development of control systems for fluid-based adaptive impact absorbers, Mechanical Systems and Signal Processing, DOI: 10.1016/j.ymssp.2018.12.006, Vol.122, pp.622-641, 2019

Faraj R., Graczykowski C., Hybrid Prediction Control for self-adaptive fluid-based shock-absorbers, Journal of Sound and Vibration, DOI: 10.1016/j.jsv.2019.02.022, Vol.449, pp.427-446, 2019

Presentation outline:

- I. Adaptive Impact Absorption (AIA)
- II. Controllable dampers for AIA
 - operating principle, mathematical model
- III. Classical vs. state-dependent formulation

IV. Investigation of state-dependent formulation

- application of Pontryagin's principle
- application of direct methods
- V. Adaptive and predictive control algorithms
 - construction of predictive model
 - time-continuous approach
 - control function and response parametrisation
- VI. Conclusions

A. Considered model and formulation

Considered system and its basic model

• State-dependent path-tracking problem

$$\begin{array}{ll} \text{Minimize:} & \int_{0}^{T} \left(\ddot{u} + \frac{\dot{u}^{2}}{2(d-u)} \right)^{2} dt \longrightarrow & \int_{0}^{T} \left(\frac{mRT}{M(d-u)} - \frac{p_{ext}A}{M} - \frac{v^{2}}{2(d-u)} \right)^{2} dt \\ \text{With respect to:} & m(t) \in \langle m^{\min}, m^{\max} \rangle \\ & A_{\nu}(t) \in \langle A_{\nu}^{\min}, A_{\nu}^{\max} \rangle \\ \text{Subject to:} & \int_{u_{0}}^{u(T)} F_{abs} du = \frac{1}{2} M v_{0}^{2} \end{array}$$

- Single-chamber damper
- Isothermal process
- Simple model of the gas flow

$$\frac{du}{dt} = v$$

$$\frac{dv}{dt} = -\frac{mRT}{M(d-u)} + \frac{p_{ext}A}{M}$$

$$\frac{dm}{dt} = -A_v \left(\frac{mRT}{A(d-u)} - p_{ext}\right)$$
IC: u(0) = u₀, $\dot{u}(0) = v_0$, m(0) = m₀

B. Recapitulation of Pontryagin's maximum principle

Problem considered:

Maximize:
$$J(x, \bar{u}) = \int_{t_0}^{t_f} g(x, \bar{u}, t) dt$$

With respect to: \bar{u}
Subject to: $\dot{x} = f(x, \bar{u}, t)$

Hamiltonian:
$$H(x, \lambda, \overline{u}, t) = g(x, \overline{u}, t) + \lambda^{T}(t) f(x, \overline{u}, t)$$

<u>Optimality conditions</u> for the case of free time t_f :

1.
$$H(x^{*}(t), \lambda^{*}(t), \bar{u}^{*}(t), t) \geq H(x^{*}(t), \lambda^{*}(t), \bar{u}(t), t)$$

2. $\frac{\partial H}{\partial x}(x^{*}(t), \lambda^{*}(t), \bar{u}^{*}(t), t) = -\dot{\lambda}^{*}$
3. $\frac{\partial H}{\partial \lambda}(x^{*}(t), \lambda^{*}(t), \bar{u}^{*}(t), t) = \dot{x}^{*}$
4. Transversality conditions:
 $\lambda^{*}(t_{f}) = 0$ if $x(t_{f})$ free or $x^{*}(t_{f}) = x(t_{f})$ if $x(t_{f})$ specified

5. $H(x^{*}(t_{f}), \lambda^{*}(t_{f}), \bar{u}^{*}(t_{f}), t_{f}) = 0$

C. Application to simple AIA problem - formulation

<u>Mass of gas</u> as a control variable:

$$\mathbf{x} = [\dot{\mathbf{u}}, \mathbf{u}]^{\mathrm{T}} = [\mathbf{x}_{1}, \mathbf{x}_{2}]^{\mathrm{T}}, \quad \mathbf{x}_{0} = [\mathbf{v}_{0}, 0]^{\mathrm{T}}, \quad \overline{\mathbf{u}} = \mathbf{m}(\mathbf{t})$$

Problem considered:

Minimize:
$$J(x, \bar{u}) = \int_0^{t_f} \left[\left(\frac{\bar{u}RT}{M(d - x_2)} - \frac{p_{ext}A}{M} \right) - \frac{x_1^2}{2(d - x_2)} \right]^2 dt$$

With respect to: $\bar{u} \in \langle 0, m_0 \rangle$, Subject to: $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} -\frac{\bar{u}RT}{M(d - x_2)} + \frac{p_{ext}A}{M} \\ \frac{x_1}{X_1} \end{bmatrix}$

Hamiltonian: $H(x,\lambda,\bar{u},t) = \left(-\frac{\bar{u}RT}{M(d-x_2)} + \frac{p_{ext}A}{M}\right)\lambda_1 + x_1\lambda_2 + \left[\left(\frac{\bar{u}RT}{M(d-x_2)} - \frac{p_{ext}A}{M}\right) - \frac{x_1^2}{2(d-x_2)}\right]^2$

Optimality conditions:

1a. $H(x^{*}(t), \lambda^{*}(t), \bar{u}^{*}(t), t) \leq H(x^{*}(t), \lambda^{*}(t), \bar{u}(t), t)$

1b. Singular arc:
$$\frac{\partial H}{\partial \bar{u}} = 0 \rightarrow \lambda_{1(sa)}^{*} = 2 \left[\frac{\bar{u}_{(sa)}^{*}RT}{M(d-x_{2}^{*})} - \frac{p_{ext}A}{M} - \frac{(x_{1}^{*})^{2}}{2(d-x_{2}^{*})} \right]$$

 $\rightarrow \bar{u}_{(sa)}^{*} = \frac{M(x_{1}^{*})^{2}}{2RT} + \frac{p_{ext}A(d-x_{2}^{*})}{RT} + \frac{\lambda_{1(sa)}^{*}M(d-x_{2}^{*})}{2RT}$

C. Application to simple AIA problem - governing equations

4. Transversality conditions: $x_1^*(t_f) = 0$, $\lambda_2^*(t_f) = 0$ 5. $\left(-\frac{\overline{u}^*(t_f)RT}{M(d-x_2^*(t_f))} + \frac{p_{ext}A}{M}\right)\lambda_1(t_f) + \left(\frac{\overline{u}^*(t_f)RT}{M(d-x_2^*(t_f))} - \frac{p_{ext}A}{M} - \frac{x_1^*(t_f)^2}{2(d-x_2^*(t_f))}\right)^2 = 0$ + condition of energy disspation $\rightarrow \lambda_1^*(t_f) = 0$

Problem solved: Find $\{\lambda_1^*(0), \lambda_2^*(0)\}$ such that all above conditons are satisfied.

C. Application to simple AIA problem - proposed solution method

Remarks:

1. Differentiation of the Hamiltonian with respect to time:

$$\frac{\mathrm{d}H}{\mathrm{d}t} = \frac{\partial H}{\partial \overline{u}} \frac{\partial \overline{u}}{\partial t} + \frac{\partial H}{\partial x} \dot{x} + \frac{\partial H}{\partial \lambda} \dot{\lambda}$$

H(t) = const.: i) at singular arc, ii) when $\bar{u}^* = u_{min}$ or $\bar{u}^* = u_{max}$.

2. Condition $H(t_f) = 0$, continuity of state, co-state and control:

- H(t) = 0 for t $\in \langle 0, t_f \rangle \rightarrow$ additional equation for costates,

- reduction of the problem to finding $\lambda_1^*(0)$.

• <u>The standard approach:</u>

Find $\lambda_1^*(0)$ using the transversality conds.: $\lambda_1^*(t_f) = 0$, $\lambda_2^*(t_f) = 0$

- <u>The proposed approach</u>:
 - assumption: the last stage follows optimal state-dependent path

$$\rightarrow \text{ control } \bar{u}^* = \frac{M(x_1^*)^2}{2RT} + \frac{p_{\text{ext}}A(d-x_2^*)}{RT} \text{ at singular arc with } \lambda_1^*(t) = \lambda_2^*(t) = 0,$$

- find $\lambda_1^*(0)$ using the conditions of reaching singular arc.

C. Application to simple AIA problem - numerical results

C. Application to simple AIA problem - numerical results

D. More complex AIA problem - formulation

<u>Valve area</u> as a control variable:

$$\mathbf{x} = [\dot{\mathbf{u}}, \mathbf{u}, \mathbf{m}]^{\mathrm{T}} = [\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}]^{\mathrm{T}}, \ \mathbf{x}_{0} = [\mathbf{v}_{0}, \mathbf{0}, \mathbf{m}_{0}]^{\mathrm{T}}, \ \overline{\mathbf{u}} = \mathbf{A}_{v}(\mathbf{t})$$

Problem considered: Minimize:
$$J(x, \overline{u}) = \int_0^{t_f} \left(\frac{x_3 RT}{M(d - x_2)} - \frac{p_{ext}A}{M} - \frac{x_1^2}{2(d - x_2)} \right)^2 dt$$

With respect to:
$$\bar{u} \in \langle 0, A_v^{\max} \rangle$$
, Subject to: $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} -\frac{x_3 RT}{M(d-x_2)} + \frac{p_{ext}A}{M} \\ x_1 \\ -\bar{u} \left(\frac{x_3 RT}{A(d-x_2)} - p_{ext} \right) \end{bmatrix}$

Hamiltonian: H(x,
$$\lambda$$
, \overline{u} , t) = $\left(-\frac{x_3 RT}{M(d-x_2)} + \frac{p_{ext}A}{M}\right)\lambda_1 + x_1\lambda_2 - \overline{u}\left(\frac{x_3 RT}{A(d-x_2)} - p_{ext}\right)\lambda_3$
+ $\left[\left(\frac{x_3 RT}{M(d-x_2)} - \frac{p_{ext}A}{M}\right) - \frac{x_1^2}{2(d-x_2)}\right]^2$

Optimality conditions:

- 1. The inequality $H^* \le H$ yields: $\bar{u}^* = \begin{cases} \bar{u}_{\min} \text{ for } \lambda_3^* < 0\\ \bar{u}_{\max} \text{ for } \lambda_3^* > 0 \end{cases}$
- 2. Singular arc: $\frac{\partial H}{\partial \overline{u}} = 0 \rightarrow \lambda_3^* = 0$, finding control function nontrivial

D. More complex AIA problem - proposed solution method

Remarks:

- 1. H(t) = const.: i at singular arc, ii) when $\overline{u}^* = u_{\min}$ or $\overline{u}^* = u_{\max}$ $H(t) \neq 0$ for $t \in \langle 0, t_f \rangle$ due to possible control discontinuities.
- 2. The last stage follows optimal state-dependent path: $x_3 = \frac{M(x_1^*)^2}{2RT} + \frac{p_{ext}A(d-x_2^*)}{RT}$ \rightarrow control $\bar{u}^* = \bar{u}^*(x_1, x_2)$ at singular arc with $\lambda_1^*(t) = \lambda_2^*(t) = \lambda_3^*(t) = 0$.

• <u>The proposed approach:</u>

Find $\{\lambda_1^*(0), \lambda_2^*(0), \lambda_3^*(0)\}$ using the condition of reaching singular arc

- <u>Alternative solution</u>:
 - a. Assumption of control strategy with three-stages:
 - i) min. valve opening, i) max. valve opening, iii) following state-dependent path
 - b. Optimization of control switching times.
 - c. Verification of Pontryagin's optimality conditions.

D. More complex AIA problem - numerical results

D. More complex AIA problem - numerical results

E. Application of direct discretization methods

The concept of direct methods:

- 1. Discretization of the control function in time domain.
- 2. Application of selected time integration method
 - transformation into large nonlinear optimization problem
- 3. Application of algorithmic differentiation to construct gradients and Hessians
- 4. Application of numerical optimization methods to find discrete values of the control function

CasADi: a software framework for nonlinear optimization and optimal control

Joel A. E. Andersson ^{CC}, Joris Gillis, Greg Horn, James B. Rawlings & Moritz Diehl

Mathematical Programming Computation **11**, 1–36(2019) Cite this article

F. Numerical example: single-chamber absorber

Control of valve opening - no constraints

F. Numerical example: single-chamber absorber

Control of valve opening - active constraints

G. Numerical example: double-chamber absorber

Control of valve opening - large number of steps

G. Numerical example: double-chamber absorber

Control of valve opening - small number of steps

Presentation outline:

- I. Adaptive Impact Absorption (AIA)
- II. Controllable dampers for AIA
 - operating principle, mathematical model
- III. Classical vs. state-dependent formulation
- IV. Investigation of state-dependent formulation
 - application of Pontryagin's principle
 - application of direct methods

V. Adaptive and predictive control algorithms

- construction of predictive model
- time-continuous approach
- control function and response parametrisation

A. Control problem for system with disturbances

• Model of system with disturbances:

Features:

- force disturbance
- gas leakage disturbance
- unknown parameters
- · control system equation

 $M\ddot{u} + F_p + F_{dist}(t) = F_{ext}(t)$ (1)

$$\dot{\mathbf{m}}_{1} = \mathbf{Q}_{\mathrm{m}}(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{T}_{\mathrm{up}}^{\mathrm{c}}, \mathbf{C}_{\boldsymbol{\nu}}^{\mathrm{c}} \mathbf{A}_{\boldsymbol{\nu}}) + \mathbf{Q}_{\mathrm{leak}}(\mathbf{t})$$
(2)

$$\dot{\mathbf{m}}_{2} = -\mathbf{Q}_{\mathrm{m}}(\mathbf{p}_{1}, \mathbf{p}_{2}, \mathbf{T}_{\mathrm{up}}^{\mathrm{c}}, \mathbf{C}_{\nu} \mathbf{A}_{\nu}) - \mathbf{Q}_{\mathrm{leak}}(\mathbf{t})$$
(3)

$$\dot{Q}_1 + Q_m c_p T_{up}^c + Q_{leak}(t) c_p T_{up}^d = \frac{d}{dt} (m_1 c_v T_1) + p_1 \dot{V}_1$$
 (4)

$$\dot{Q}_2 - Q_m c_p T_{up}^c - Q_{leak}(t) c_p T_{up}^d = \frac{d}{dt} (m_2 c_v T_2) + p_2 \dot{V}_2$$
 (5)

$$T_{\nu}\frac{dA_{\nu}}{dt} + A_{\nu} = k_{\nu}u_{\nu}(t)$$
 (6)

 $A_{v} \ge 0$ - semi-active system $A_{v} < 0$ - active system

• Two versions of state-dependent path-tracking problem:

$$\begin{aligned} \text{Minimize:} \quad & \int_{0}^{T} \left(F_{p} \big(u_{\nu}(t) \big) - \frac{\text{M}\dot{u}(t)^{2}}{2 \big(d - u(t) \big)} - \left[F_{ext}(t) - F_{dist}(t) \right] \right)^{2} + q A_{\nu} (u_{\nu}(t))^{2} \, dt \\ \text{or Minimize:} \quad & \int_{0}^{T} \left(\ddot{u} \big(u_{\nu}(t) \big) - \frac{\dot{u}(t)^{2}}{2 \big(d - u(t) \big)} \right)^{2} + q A_{\nu} (u_{\nu}(t))^{2} \, dt \qquad \qquad q = \begin{cases} 0 \text{ for } A_{v} \ge 0 \\ \overline{q} \text{ for } A_{v} < 0 \end{cases} \end{aligned}$$

B. Construction of the predictive model

- Assumptions for model derivation:
 - joint prediction of external and disturbance force: $F_{ext_dist}(t)$,
 - neglecting heat transfer from the chambers: $\dot{Q}_1=\dot{Q}_2=0$
- Applied mathematical transformations:

$$\int_{t_0}^{t} (Eq. 2 + Eq. 3) dt = 0$$

$$\int_{t_0}^{u} (Eq. 1) du = 0$$

$$\int_{t_0}^{t} (Eq. 4 + Eq. 5) dt = 0$$

$$\int_{t_0}^{t} (Eq. 5) dt = 0$$

$$\int_{t_0}^{t} (Eq. 5) dt = 0$$

$$M\ddot{u} + F_p - F_{ext_dist}(t) = 0$$

$$\dot{m}_1 = Q_m(p_1, p_2, T_2, C_\nu A_\nu) + Q_{leak}(t)$$

$$m_1 + m_2 = m$$

$$\frac{1}{2}M(v_0^2 - v^2) + \int_{u_0}^{u} F_{ext_dist}(t) du = \Delta U_1 + \Delta U_2$$

$$\frac{p_2 V_2^{\kappa}}{m_2^{\kappa}} = \frac{p_2^0(V_2^0)^{\kappa}}{(m_2^0)^{\kappa}}$$

$$T_{\nu} \frac{dA_{\nu}}{dt} + A_{\nu} = k_{\nu} u_{\nu}(t)$$

• Features of the predictive model:

C. System identification

Identification of system parameters and disturbances

Equation of motion: $M\ddot{u} + F_p(p_1, p_2) = F_{ext}(t) - F_{dist}(t)$

<u>Approach 1</u>: assumption of specific form of force, e.g.: $F_{dist} = ku^p + c\dot{u}^r + d\ddot{u}^s$

• Direct identification: no. of unknowns = no. time instants

Case: $F_{dist} = ku + c\dot{u}$ $\begin{bmatrix} \ddot{u}_{1} & \dot{u}_{1} & u_{1} \\ \ddot{u}_{2} & \dot{u}_{2} & u_{2} \\ \ddot{u}_{3} & \dot{u}_{3} & u_{3} \end{bmatrix} \begin{bmatrix} M \\ c \\ k \end{bmatrix} + \begin{bmatrix} F_{p}^{1} \\ F_{p}^{2} \\ F_{p}^{3} \\ F_{p}^{3} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \longrightarrow \begin{bmatrix} M \\ c \\ k \end{bmatrix} = -\begin{bmatrix} \ddot{u}_{1} & \dot{u}_{1} & u_{1} \\ \ddot{u}_{2} & \dot{u}_{2} & u_{2} \\ \ddot{u}_{3} & \dot{u}_{3} & u_{3} \end{bmatrix}^{-1} \begin{bmatrix} F_{p}^{1} \\ F_{p}^{2} \\ F_{p}^{3} \\ F_{p}^{3} \end{bmatrix}$

Solution depends on measurements times and conditioning of the main matrix

• Optimization approach: (larger no. time instants) Minimize: $\sum_{i=1}^{n} (M\ddot{u}_{i} + c\dot{u}_{i} + ku_{i} + F_{p}^{i})^{2}$

• Inertial force ident.:
$$F_{ext} = \frac{F_{ext}^{(i)}}{\ddot{u}^{(i)}}\ddot{u} \rightarrow (M - \frac{F_{ext}^{(i)}}{\ddot{u}^{(i)}})\ddot{u}^{(i)} + F_p^i = 0 \rightarrow M_{eq} = -\frac{F_p^{(i)}}{\ddot{u}^{(i)}}$$

C. System identification

Identification of system parameters and disturbances

Equation of motion: $M\ddot{u} + F_p(p_1, p_2) = F_{ext}(t) - F_{dist}(t)$

Approach 2: direct identification at given time instants

• System of equations:

$$\begin{cases} M\ddot{u}^{(i)} + F_p^{(i)} + F_{dist}^{(i)} = 0, & M\ddot{u}^{(i+1)} + F_p^{(i+1)} + F_{dist}^{(i+1)} = 0\\ \frac{1}{2}M(v_{(i)}^2 - v_{(i+1)}^2) + \int_{u_{(i)}}^{u_{(i+1)}} F_{dist}(u) du = \left(U_1^{(i+1)} + U_2^{(i+1)}\right) - \left(U_1^{(i)} + U_2^{(i)}\right) \end{cases}$$

- requires assuming disturbance change, effective for short control steps
- extrapolation to entire process: $\overline{F}_{dist}(t_i, t) = f_i(F_{dist}(t_1), F_{dist}(t_2), ..., F_{dist}(t_i), t)$

Equation of mass balance: $\dot{m}_1 = Q_m(p_1, p_2, T_{up}^c, C_{\nu}A_{\nu}) + Q_{leak}(t)$

Approach 1require consideringApproach 2actual valve opening

D. Final formulation for problem with disturbances

• Problem solved at each step:

Minimize:
$$\int_{t_i}^{T} \left(\ddot{u}(u_v(t)) + \frac{\dot{u}(t_i)^2}{2(d-u(t_i))} \right)^2 + qA_v(u_v(t))^2 dt$$

With respect to: $u_v(t) \in [u_{\min}, u_{\max}], t \in (t_i, T)$

Subject to:
$$\begin{aligned} & \mathsf{M}\ddot{\mathsf{u}} + \mathsf{F}_{p} - \overline{\mathsf{F}}_{\mathsf{ext_dist}}(\mathsf{t}_{i},\mathsf{t}) = 0 \\ & \dot{\mathsf{m}}_{1} = \mathsf{Q}_{\mathsf{m}}(\mathsf{C}_{\nu}\mathsf{A}_{\nu}) + \overline{\mathsf{Q}}_{\mathsf{leak}}(\mathsf{t}_{i},\mathsf{t}) \\ & \mathsf{T}_{\nu}\frac{\mathsf{d}\mathsf{A}_{\nu}}{\mathsf{dt}} + \mathsf{A}_{\nu} = \mathsf{k}_{\nu}\mathsf{u}_{\nu}(\mathsf{t}) \\ & \int_{\mathsf{u}(\mathsf{t}_{i})}^{\mathsf{u}(\mathsf{T})}\mathsf{F}_{p}\mathsf{du} = \frac{1}{2}\mathsf{M}\dot{\mathsf{u}}(\mathsf{t}_{i})^{2} + \int_{\mathsf{u}(\mathsf{t}_{i})}^{\mathsf{u}(\mathsf{T})}\overline{\mathsf{F}}_{\mathsf{ext_dist}}(\mathsf{t}_{i},\mathsf{t})\mathsf{du} \end{aligned}$$

• Shortened prediction time:

Minimize:
$$\int_{t_i}^{t_i + \Delta t} \left(\ddot{u}(u_v(t)) + \frac{\dot{u}(t_i)^2}{2(d - u(t_i))} \right)^2 + qA_v(u_v(t))^2 dt$$

With respect to: $u_v(t) \in [u_{\min}, u_{\max}], t \in (t_i, t_i + \Delta t)$
Subject to: actual predictive model

Solution methods: i) optimal control with time-continuous approach
 ii) control function parametrisation, iii) response parametrisation

E. Optimal control (time-continuous approach)

Standard problem: absorption of single-impact by semi-active system •

<u>Objective</u>: minim. of deceleration by valve area control Case 1: unknown disturbance force Case 2: unknown mass and disturbance force

Mathematical formulation: Find •

$$dA_{\nu}^{\text{opt}}(t) = \arg\min \int_{t_i}^{t_i + \Delta t} \left(\ddot{u}(A_{\nu}(t)) + \frac{\dot{u}(t_i)}{2(d - u)} \right)$$

$$\frac{\dot{u}(t_i)^2}{2(d-u(t_i))}$$
² dt

E. Optimal control (time-continuous approach)

- Three-step control algorithm:
 - 1. System identification based on measurements and governing equations
 - 2. Prediction step: simulation of response with $A_{\nu}(t) = A_{\nu}^{\min}$ or $A_{\nu}(t) = A_{\nu}^{\max}$ to check if optimal deceleration a^{opt} is reached
 - 3. Control determination step: calculation of valve opening $A_v(t)$ giving $\ddot{u}(t) = a^{opt}$ using inverse dynamics prediction
- Scheme of the control system:

E. Optimal control (time-continuous approach)

• The case of disturbance by elastic force

Unknown disturbance force

Unknown impacting object mass and disturbance force

E. Optimal control (time-continuous approach)

The case of disturbance by viscous force

Unknown impacting object mass and disturbance force

Graczykowski C., Faraj R., Identification-based predictive control of semi-active shock-absorbers for adaptive dynamic excitation mitigation, MECCANICA, Vol.55, No.12, pp.2571-2597, 2020

F. Control function parameterisation

• Standard problem: absorption of single-impact by semi-active system

<u>Objective</u>: minim. of deceleration by valve area control <u>Features</u>: unknown mass and disturbance force

• Mathematical formulation: Find
$$\beta^{opt} = \arg \min \int_{t_i}^{t_i + \Delta t} \left(\ddot{u}(A_{\nu}(\beta, t)) + \frac{\dot{u}(t_i)^2}{2(d - u(t_i))} \right)^2 dt$$

- Simplest parametrization: $A_v(\beta, t) = A_v^{const}$
 - 1. Application of gradient-based methods

Auxiliary function: $A_v^{opt}(t)$ – valve opening providing $\ddot{u}(t) = \ddot{u}(t_i)$, determined using IDP Starting point: $A_v^{ini}(t_i) = \frac{1}{2}[A_v^{opt}(t_i) + A_v^{opt}(t_i + \Delta t)]$

2. Application of linearized predictive model

Solution using forward Euler method with one integration step

 $\ddot{u}(A_{v}^{\text{const}},t) = f(p(t_i), m(t_i), T(t_i), u(t_i), v(t_i), a(t_i), A_{v}^{\text{const}}, t)$

Analytical calculation of the objective function $I(A_v^{const})$

F. Control function parameterisation

• Standard problem: absorption of single-impact by semi-active system

<u>Objective</u>: minim. of deceleration by valve area control <u>Features</u>: unknown mass and disturbance force

Mathematical formulation: Find β^{opt}

$$\mathbf{S^{opt}} = \arg\min \int_{t_i}^{t_i + t_i}$$

$$\left(\frac{\dot{u}(A_{\nu}(\boldsymbol{\beta},t))}{2(d-u(t_{i}))}\right)^{2} dt$$

• Scheme of the control system:

F. Control function parameterisation

Operation during entire process

Details of method operation

F. Control function parameterisation

• Advanced problem: absorption of single-impact in system with leakage (semi-active / active control)

<u>Objective</u>: minim. of deceleration and operation cost by applied voltage control <u>Features</u>: unknown mass, force disturbance and leakage

• Mathem. formulation: Find
$$\beta^{opt} = \arg \min \int_{t_i}^{t_i + \Delta t} \left(\ddot{u}(u_v(\beta, t)) + \frac{\dot{u}(t_i)^2}{2(d - u(t_i))} \right)^2 + qA_v(u_v(\beta, t))^2 dt$$

- Simplest parametrization: $u_v(\beta, t) = u_v^{const}$
- Influence of voltage on valve opening area:

$$T_{\nu} \frac{dA_{\nu}}{dt} + A_{\nu} = k_{\nu} u_{\nu} \qquad u_{\nu} - \text{constant} \qquad k_{\nu} = \frac{A_{\nu}^{\max}}{u_{\nu}^{\max}} \text{ or } \frac{A_{\nu}^{\min}}{u_{\nu}^{\min}}$$
$$A_{\nu}(t) = A_{\nu}(t_{i})e^{-\frac{(t-t_{i})}{T_{\nu}}} + A_{\nu}^{\max} \frac{u_{\nu}}{u_{\nu}^{\max}} \left(1 - e^{-\frac{(t-t_{i})}{T_{\nu}}}\right) \qquad \text{for } u_{\nu} \ge 0 \text{ and } k_{\nu} = \frac{A_{\nu}^{\max}}{u_{\nu}^{\max}}$$

F. Control function parameterisation

• Influence of time constant T_v on effectiveness of impact absorption process

F. Control function parameterisation

• Comparison of semi-active and active control in case of leakage disturbance

F. Control function parameterisation

• Influence of control cost on operation of active control

C.Graczykowski, R.Faraj, Extended Identification-based Predictive Control for Optimal Impact Mitigation, submitted to IEEE 61st Conference on Decision and Control (CDC), Cancún, Mexico, December 6-9, 2022

G. System response parameterisation

• Standard problem: absorption of single-impact by semi-active system

<u>Objective</u>: minim. of deceleration by valve area control <u>Features</u>: unknown mass and disturbance force

• Mathematical formulation: Find
$$\beta^{opt} = \arg \min \int_{t_i}^{t_i + \Delta t} \left(\ddot{u}(\beta, t) + \frac{\dot{u}(t_i)^2}{2(d - u(t_i))} \right)^2 dt$$

• Other interpretation: β – vector parametrising control function $A_v(\beta, t)$ for which predictive model has analytical solution

- Comparison to control parametrisation: $A_v(\beta, t), \ddot{u}(\beta, t) analytical functions$ set of functions $A_v(\beta, t) - very$ limited
- Determination of function $A_{\nu}(\beta, t)$ using $\ddot{u}(\beta, t)$:

$$\underline{\text{Mechanical response:}} \quad v(\boldsymbol{\beta}, t) = v(t_i) + \int_{t_i}^{t} \ddot{u}(\boldsymbol{\beta}, t) dt \qquad u(\boldsymbol{\beta}, t) = u(t_i) + \int_{t_i}^{t} v(t_i) dt + \int_{t_i}^{t} \int_{t_i}^{t} \ddot{u}(\boldsymbol{\beta}, t) dt^2$$

$$F_p(\boldsymbol{\beta}, t) = -M\ddot{u}(\boldsymbol{\beta}, t) - F_{\text{dist}}(t_i, t)$$

G. System response parameterisation

• Determination of function $A_{\nu}(\boldsymbol{\beta}, t)$ using $\ddot{u}(\boldsymbol{\beta}, t)$

$$\begin{array}{l} \hline \text{Thermodynamic}\\ \hline \text{response:} & p_2A_2 - p_1A_1 = F_p(\boldsymbol{\beta},t)\\ & m_1 + m_2 = m & p_i(\boldsymbol{\beta},t)\\ & \frac{1}{2}M(v(t_i)^2 - v^2) - \int_{u(t_i)}^{u} F_{\text{dist}}(t_i,t) du = \Delta U_1 + \Delta U_2 & \Longrightarrow & m_i(\boldsymbol{\beta},t)\\ & \frac{p_2V_k^{\nabla}}{m_k^{\nabla}} = \frac{p_2^0(V_2^0)^{\kappa}}{(m_2^0)^{\kappa}}\\ & V_1(u) = m_1RT_1, \ p_2V_2(u) = m_2RT_2 \\ \hline \hline \tilde{A}_{\nu} = \tilde{A}_{\nu}\left(F_p(t), \frac{dF_p(t)}{dt}, \int_{t_i}^{t} F_p(t) dt, \int_{t_i}^{t} \int_{t_i}^{t} F_p(t) dt^2, M, F_{\text{dist}}(t_i,t), p(t_i), u(t_i), v(t_i), t\right)\\ & \tilde{A}_{\nu} = \tilde{A}_{\nu}\left(\ddot{u}(t), \frac{d\ddot{u}(t)}{dt}, v(t), u(t), M, F_{\text{dist}}(t_i,t), p(t_i), t\right)\\ \hline & \tilde{A}_{\nu} = \tilde{A}_{\nu}(\boldsymbol{\beta}, M, F_{\text{dist}}, p(t_i), u(t_i), v(t_i), t) \end{array}$$

G. System response parameterisation

• Solution of <u>unconstrained</u> optimization problem

$$\beta = \ddot{u}(t_{i} + \Delta t) \longrightarrow \ddot{u}(\beta, t) = \ddot{u}(t_{i}) + \frac{\beta - \ddot{u}(t_{i})}{\Delta t}(t - t_{i})$$

$$\beta^{opt} = \arg \min \int_{t_{i}}^{t_{i} + \Delta t} \left(\ddot{u}(t_{i}) + \frac{\beta - \ddot{u}(t_{i})}{\Delta t}(t - t_{i}) + \frac{\dot{u}(t_{i})^{2}}{2(d - u(t_{i}))} \right)^{2} dt$$

$$\beta^{opt} = \ddot{u}^{opt}(t_{i} + \Delta t) = -\frac{\ddot{u}(t_{i})}{2} + \frac{3}{4} \frac{\dot{u}(t_{i})^{2}}{(d - u(t_{i}))}$$
Distance from the optimal path decreases twice during each control step

Solution of <u>constrained</u> optimization problem

Standard constraints:
$$A_v^{\min} \leq \widetilde{A}_v(\boldsymbol{\beta}, t) \leq A_v^{\max}$$
, $V_{A_v}^{\min} \leq \frac{d\widetilde{A}_v(\boldsymbol{\beta}, t)}{dt} \leq V_{A_v}^{\max}$

A. Constraints reached at the ends of control step:

$$A_{v}^{\min} \leq \widetilde{A}_{v}(\boldsymbol{\beta}, t_{i}) \leq A_{v}^{\max}, \quad A_{v}^{\min} \leq \widetilde{A}_{v}(\boldsymbol{\beta}, t_{i} + \Delta t) \leq A_{v}^{\max}$$

B. Constraints reached in the middle of control step:

$$t_{ext}(\boldsymbol{\beta}) = t(\boldsymbol{\beta}) \mid \frac{d\widetilde{A}_{\nu}(\boldsymbol{\beta},t)}{dt} = 0, \quad A_{\nu}^{\min} \leq \widetilde{A}_{\nu}(\boldsymbol{\beta},t_{ext}(\boldsymbol{\beta})) \leq A_{\nu}^{\max}$$

Constrained problem solved using Lagrange multipliers and KKT conditions

G. System response parameterisation

Operation during entire process

Details of method operation

G. System response parameterisation

Comparison of methods with control and response parameterisation - case of elastic disturbance

Comparison of methods with control and response parameterisation - case of viscous disturbance

G. System response parameterisation

• Advanced problem: absorption of double-impact by semi-active system

<u>Objective</u>: minim. of deceleration by valve area control <u>Features</u>: unknown mass M_I and M_{II}, unknown disturbance force F_{dist}

- Mathematical formulation: Find $\beta^{opt} = \arg \min \int_{t_i}^{t_i + \Delta t} \left(\ddot{u}_I(\beta, t) + \frac{\dot{u}_I(t_i)^2}{2(d u_I(t_i))} \right)^2 dt$
- Applied models: system model: 2 DOF (mass M_I and M_{II}) + contact force
 predictive model: 1 DOF (unknown mass M_I) + external force F_{ext}
- System identification: $M_I \ddot{u}(t) + F_p(t) + F_{dist}(t) = F_{ext}(t)$

$$\underbrace{\begin{pmatrix} M_{I} - \frac{F_{ext}(t) - F_{dist}(t)}{\ddot{u}_{I}(t)} \\ M_{eq} \end{pmatrix}}_{M_{eq}} \ddot{u}_{I}(t) + F_{p}(t) = 0 \quad \longrightarrow \quad M_{eq} = -\frac{F_{p}(t_{i})}{\ddot{u}_{I}(t_{i})}$$

• Solution of the optimization problem: identical as in previous example

G. System response parameterisation

Double-impact with inelastic collision, no disturbance: Scenario 1

Double-impact with inelastic collision, no disturbance: Scenario 2

G. System response parameterisation

Double-impact with partially inelastic collision, no disturbance:

Double-impact with partially inelastic collision, elastic disturbance force

C.Graczykowski, R.Faraj, Adaptive Model Predictive Control of semi-active shock-absorbers under impact excitation, submitted to Structural Control and Health Monitoring, 2022

VI. Summary and conclusions

Summary:

- 1. The problem of **Adaptive Impact Absorption** with the use of **controllable dampers** was considered.
- 2. The state-dependent formulation of AIA problem was proposed.
- 3. The formulation was investigated using Pontryagin's principle and direct methods.
- 4. The **adaptive control algorithms** based on concept of MPC, system identification, and various methods of control determination were proposed and tested.

Conclusions:

- 1. State-dependent formulation and MPC approach are well adjusted to AIA problems with unknown system parameters, excitations and disturbances.
- 2. Algorithms with arbitrary change of control in time provide optimal system response, but require intensive control actions.
- 3. Algorithms with control parametrisation enable significant decrease of the control cost.
- 4. Algorithms with response parametrisation additionally allow to reduce the numerical cost.

Dziękuję za uwagę!