Department of Intelligent Technologies

Institute of Fundamental Technological Research

Progress in the design of new structures seems to be unlimited

/Klaus–Jürgen Bathe, 1967/

Main research topics

- Structural health monitoring (SHM)
- Adaptive systems & optimum control
- Oynamics of structures and machines
- Vibroacoustics
- Mobile robotics
- Other topics (ballistic & blast protection, optimum design of structures, additive manufacturing & surface engineering, prestressed composites)

Labs

Motivation

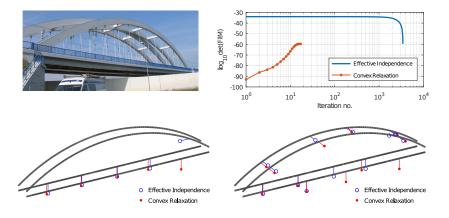
Local nondestructive testing techniques are time-consuming, expensive and require a direct access to the entire structure. Automatized response-based monitoring is the solution.

Timeliness

- always lower costs of wireless sensing systems
- extensive instrumentation of public structures, esp. in East Asia

Research problems

- Damage detection, localization and quantification^{1,2}
- Optimum sensor placement, sensitivity analysis³, substructuring
- Indirect monitoring of loads (magnitude, location, trajectory)


¹Y.An, E.Chatzi, S.Sim, S.Laflamme, B.Błachowski, J.Ou, Recent progress and future trends on damage identification methods for bridge structures, *Structural Control & Health Monitoring* 26(10):e2416, 2019.

² J.Hou, C.Li, Ł.Jankowski, Y.Shi, L.Su, S.Yu, T.Geng, Damage identification of suspender cables by adding virtual supports with the substructure isolation method, *Structural Control & Health Monitoring* 28:e2677, 2021.

³ J.Hou, Z.Li, Ł.Jankowski, S.Wang, Estimation of virtual masses for structural damage identification, Structural Control & Health Monitoring 27(8):e2528, 2020.

Optimum sensor placement by convex relaxation⁴

⁴B.Błachowski, A.Świercz, M.Ostrowski, P.Tauzowski, P.Olaszek, Ł.Jankowski, Convex relaxation for efficient sensor layout optimization in large-scale structures subjected to moving loads, *Computer-Aided Civil and Infrastructure Engineering* 35(10):1085–1100, 2020.

Outline SHM oo Adaptive systems oo Dynamics of machines o Vibroacoustics o Mobile robotics o Other topics ooo Labs ooo Adaptive systems Operative systems

Adaptive systems & optimum control

Inspiration: In nature, dynamic optimum self-adaptation to varying external conditions is ubiquitous.

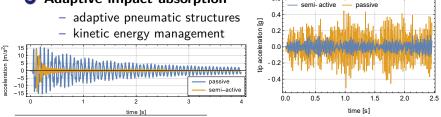
Semi-active control

changes in local mechanical properties of structural elements^{5,6} (effective stiffness, damping, moment-transfer ability, yield stress, etc.)

vs. active control

- no large external control forces
- very low energy consumption
- low danger of instabilities

⁵M.Wasilewski, D.Pisarski, Adaptive semi-active control of a beam structure subjected to a moving load traversing with time-varying velocity, *Journal of Sound and Vibration* 481:115404, 2020.


⁶M.Michajłow, Ł.Jankowski, T.Szolc, R.Konowrocki, Semi-active reduction of vibrations in the mechanical system driven by an electric motor, *Optimal Control, Application and Methods* 38(6):922–933, 2017.

Adaptive damping of vibrations^{7,8}

- dynamic reconfiguration of flexible structures9
- distributed & decentralized control of modular structures¹⁰

2 Adaptive impact absorption¹¹

⁷M.Wasilewski, D.Pisarski, C.I.Bajer, Adaptive optimal control for seismically excited structures, *Automation in Construction* 106:102885, 2019.

⁸D.Pisarski, Decentralized stabilization of semi-active vibrating structures, *Mechanical Systems and Signal Processing* 100:694–705, 2018.

⁹B.Poplawski, G.Mikulowski, R.Wiszowaty, Ł.Jankowski, Mitigation of forced vibrations by semi-active control of local transfer of moments, *Mechanical Systems and Signal Processing* 157:107733, 2021.

¹⁰D.Pisarski, R.Konowrocki, Ł.Jankowski, Scalable distributed optimal control of vibrating modular structures, Structural Control and Health Monitoring 27(4), e2502, 2020.

¹¹C.Graczykowski, R.Faraj, Development of control systems for fluid-based adaptive impact absorbers, Mechanical Systems and Signal Processing 122:622–641, 2019.
 Outline
 SHM over the systems
 Dynamics of machines
 Vibroacoustics
 Mobile robotics
 Other topics
 Labs

 0
 0
 0
 0
 0
 0
 0
 0

Adaptive systems & optimum control

Actuators for semi-active control

- pneumatic/hydraulic, inerters¹², granular¹³, shunted piezo
- optimum actuator placement
- local predictive control¹⁴

Other adaptive systems

- self-deployable structures for high-altitude aerostats^{15,16} and space structures
- real-time, energy-optimum flight trajectories for UAVs

¹²R.Faraj, Ł.Jankowski, C.Graczykowski, J.Holnicki-Szulc, Can the inerter be a successful shock-absorber? The case of a ball-screw inerter with a variable thread lead, *Journal of the Franklin Institute* 356(14):7855–7872, 2019.

¹³ J.M.Bajkowski, B.Dyniewicz, M.G ebik-Wrona, J.Bajkowski, C.I.Bajer, Reduction of the vibration amplitudes of a harmonically excited sandwich beam with controllable core, *Mech Syst Signal Proc* 129:54–69, 2019.

¹⁴R.Faraj, C.Graczykowski, Hybrid prediction control for self-adaptive fluid-based shock-absorbers, *Journal of Sound and Vibration* 449:427–446, 2019.

¹⁵L.Knap, A.Świercz, C.Graczykowski, J.Holnicki-Szulc, Self-deployable tensegrity structures for adaptive morphing of helium-filled aerostats, *Archives of Civil and Mechanical Engineering* 21:159, 2021.

¹⁶L.Knap, C.Graczykowski, J.Holnicki-Szulc, Z.Wołejsza, Strategies for reduction of energy consumption during ascending and descending process of modern telescopic HAPS aerostats, *Bulletin of the Polish Academy of Sciences: Technical Sciences* 68(1):155–168, 2020.

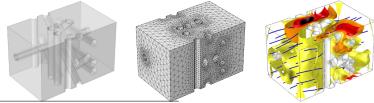
Dynamics of structures and systems

Opposite the structures under moving loads¹⁷

- track and railbed systems
- Oynamics of massive high-speed rotorshafts^{18,19} (gas turbines, turbochargers, beater mills, crushers)
 - torsional vibrations, touchless bearing systems, unbalances
- **③** Electro-mechanic coupled vibrations in drive systems

- transient and quasistatic states

¹⁷B.Dyniewicz, C.I.Bajer, K.L.Kuttler, M.Shillor, Vibrations of a Gao beam subjected to a moving mass, Nonlinear Analysis: Real World Applications 50:342–364, 2019.


¹⁸T.Szolc, R.Konowrocki, Research on stability and sensitivity of the rotating machines with overhung rotors to lateral vibrations, *Bulletin fo the Polish Academy of Sciences: Technical Sciences* 69(6):e137987, 2021.

¹⁹P.Kurnyta-Mazurek, T.Szolc, M.Henzel, K.Falkowski, Control system with a non-parametric predictive algorithm for a high-speed rotating machine with magnetic bearings, *Bulletin fo the Polish Academy of Sciences: Technical Sciences* 69(6):e138998, 2021.

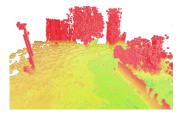
			Dynamics of machines 0			
Vibr	0200	ustics				

Multiscale vibroacoustics²⁰ & poroelastic meta-materials²¹

- optimum enclosure & microstructure design^{22,23}
- 3D printing & experimental evaluation²⁴
 - sound absorption & propagation control
 - pores, inclusions, membranes, ...

²⁰M.Meissner, Application of modal expansion method for sound prediction in enclosed spaces subjected to boundary excitation, *Journal of Sound and Vibration* 500:116041, 2021.

²¹ R.Venegas, T.G.Zieliński, G.Núñez, F.-X.Bécot, Acoustics of porous composites, *Composites Part B: Engineering* 220:109006, 2021.


²²S.Ahsani, C.Claeys, T.G.Zieliński, Ł.Jankowski, F.Scarpa, W.Desmet, E.Deckers, Sound absorption enhancement in poro-elastic materials in the viscous regime using a mass-spring effect, J Sound Vib 511:116353, 2021.

²³T.G.Zieliński, R.Venegas, C.Perrot, M.Červenka, F.Chevillotte, K.Attenborough, Benchmarks for microstructure-based modelling of sound absorbing rigid-frame porous media, J of Sound and Vib 483:115441, 2020.

²⁴ K.C.Opiela, T.G.Zieliński, Microstructural design, manufacturing and dual-scale modelling of an adaptable porous composite sound absorber, *Composite Part B: Engineering* 187:107833, 2020.

			Dynamics of machines O	Mobile robotics	
Moh	ile r	obotics			

- simultaneous mapping, localization and autonomous navigation^{25,26}
- modular manipulators²⁷ and structures²⁸
- task planning in multiagent robot systems

Applications

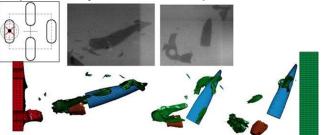
- manipulators & mobile robots
- UAVs for 3D mapping of structures $^{\rm 29}$ and health monitoring

²⁸M.Zawidzki, Ł.Jankowski, Multiobjective optimization of modular structures: weight versus geometric versatility in a Truss-Z system, *Computer-Aided Civil and Infrastructure Engineering* 34:1026–1040, 2019.

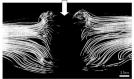
²⁵M.Pełka, J.Będkowski, Calibration of planar reflectors reshaping LiDAR's field of view, Sensors 21:6501, 2021.

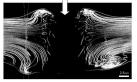
²⁶ J.Będkowski, T.Röhling, Online 3D LIDAR Monte Carlo localization with GPU acceleration, Industrial Robot: An International Journal 44(4):442–456, 2017.

²⁷ M.Zawidzki, J.Szklarski, Transformations of Arm-Z modular manipulator with Particle Swarm Optimization, Advances in Engineering Software 126:147–160, 2018.

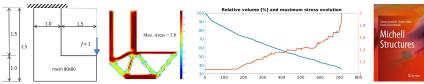

²⁹ J.Będkowski, K.Majek, P.Majek, P.Musialik, M.Pełka, A.Nüchter, Intelligent mobile system for improving spatial design support and security inside buildings, *Mobile Networks and Applications* 21(23):313–326, 2016.

Outline SHM Adaptive systems Dynamics of machines Vibroacoustics Mobile robotics Other topics Labs 0 00 000 000 000 000


Other topics: Ballistic and blast protection


Defeat mechanism provided by slotted add-on plates³⁰

Performance of Li-ion pouch battery under a high-velocity impact³¹


³⁰T.Frąś, A.Murzyn, P.Pawłowski, Defeat mechanisms provided by slotted add-on bainitic plates against small-calibre 7.62 mm x 51 AP projectiles, *International Journal of Impact Engineering* 103:241–253, 2017.

³¹T.Fras, P.Pawlowski, W.Li, T.Wierzbicki, Performance of Li-ion pouch battery under a high-velocity impact: experiment and numerical simulation, *International Journal of Impact Engineering* 155:1039152, 2021.

Outline SHM Adaptive systems Dynamics of machines Vibroacoustics Mobile robotics Other topics Labs o

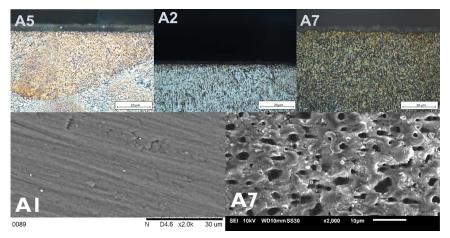
Other topics: Optimum design of structures

Topology optimization (elastoplastic^{32,33} and Michell³⁴ structures)

Structural optimization of modular structures³⁵

³²B.Błachowski, P.Tauzowski, J.Lógó, Yield limited optimal topology design of elastoplastic structures, Structural and Multidisciplinary Optimization 61:1953–1976, 2020.

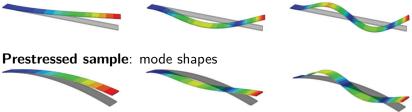
³³P.Tauzowski, B.Błachowski, J.Lógó, Topology optimization of elasto-plastic structures under reliability constraints: a first order approach, *Computers and Structures* 243:106406, 2021.


³⁴T.Lewiński, T.Sokół, C.Graczykowski, *Michell Structures*, Springer, 569 pages, 2019.

³⁵M.Zawidzki, Ł.Jankowski, Multiobjective optimization of modular structures: weight versus geometric versatility in a Truss-Z system, *Computer-Aided Civil and Infrastructure Engineering* 34(11):1026–1040, 2019.

Other topics: Additive manufacturing & surface engineering

Plasma electrolytic oxidation of AlSi10Mg alloy manufactured by selective laser melting of metallic powders

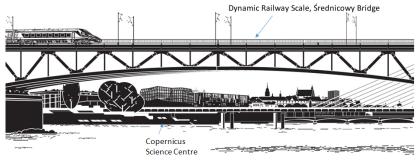


Other topics: Prestressed composite materials

- manufacturing process (experiment, modeling)
- analysis & monitoring of the operational properties^{36,37} (static, dynamic & rheological)
- optimal design of structures

Non-prestressed sample: mode shapes

³⁶A.Orłowska, C.Graczykowski, A.Galezia, The effect of prestress force magnitude on the natural bending frequencies of the eccentrically prestressed glass fibre reinforced polymer composite beams, *Journal of Composite Materials* 52(15):2115–2128, 2018.


³⁷ A.Orłowska, A.Gałęzia, A.Świercz, Ł.Jankowski, Mitigation of vibrations in sandwich-type structures by a controllable constrained layer, *Journal of Vibration and Control* 27:1595–1605, 2021.

		Dynamics of machines O		Labs ●00
Labs				

- Safety Engineering Lab
- Safety Systems Lab in Jabłonna (KEZO PAN)
- 4 field test stands

(2x railway bridge, 1x footbridge, 1x football stadium)

2 small labs (electronics, mobile robotics/vibroacoustics)

			Dynamics of machines O					
Safe	Safety Engineering Lab							

			Dynamics of machines 0		
Safe	tv Sי	vstems La	b		

in KEZO PAN, Jabłonna

Progress in the design of new structures seems to be unlimited

/Klaus–Jürgen Bathe, 1967/